
IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

24

Security Processing for High End Embedded System with Security Processing for High End Embedded System with Security Processing for High End Embedded System with Security Processing for High End Embedded System with

Cryptographic AlgorithmsCryptographic AlgorithmsCryptographic AlgorithmsCryptographic Algorithms

M.Shankar1, Dr.M.Sridar 2, Dr.M.Rajani 3

1Associate professor,
Department of Electrical and Electronics Engineering,

Kuppam Engineering College, Kuppam, Andhra Pradesh (India)
Magaprajin@gmail.com

2Director International Relations

Bharath University,
Chennai, 600073, Tamilnadu, India,
 deanrdinter@bharathuniv.ac.in

3Director of R & D,
Bharath University,

Chennai, 600073, Tamilnadu, India,
deanrd@bharathuniv.ac.in

Abstract
This paper is intended to introduce embedded system designers
and design tool developers to the challenges involved in
designing secure embedded systems. The challenges unique to
embedded systems require new approaches to security
covering all aspects of embedded system design from
architecture to implementation. Security processing, which
refers to the computations that must be performed in a system
for the purpose of security, can easily overwhelm the
computational capabilities of processors in both low- and high-
end embedded systems. The paper also briefs on the security
enforced in a device by the use of proprietary security
technology and also discusses the security measures taken
during the production of the device. We also survey solution
techniques to address these challenges, drawing from both
current practice and emerging research, and identify open
research problems that will require innovations in embedded
system architecture and design methodologies.

Keywords: Security, Performance, Design, Reliability,
Algorithms, Verification, architecture, hardware design,
processing requirements, security protocols, cryptographic
algorithms, encryption.

1. INTRODUCTION
Today, security in one form or another is a requirement
for an increasing number of embedded systems, ranging

from low-end systems such as PDAs, wireless handsets,
networked sensors, and smart cards, to high-end systems
such as routers, gateways, firewalls, storage servers, and
web servers. Technological advances that have spurred
the development of these electronic systems have also
ushered in seemingly parallel trends in the sophistication
of security attacks. Security has been the subject of
intensive research in the context of general-purpose
computing and communications systems. However,

security is often misconstrued by embedded system
designers as the addition of features, such as specific
cryptographic algorithms and security protocols, to the
system. In reality, it is a new dimension that designers
should consider throughout the design process, along
with other metrics such as cost, performance, and power.
The secure data not only requires protection during data
transfer but also while handling the data at the end user
devices [1]. Vulnerability at the end user device, like
easy access to the secret keys that are used to encrypt or
decrypt the data, can easily turn down the entire security
measures. The protocol involved for the secure
transmission of either of the above mentioned contents
through a public network uses more or less the same
techniques but the handling of the user restricted data at
the user’s end involves much more care as the content is
protected from the user itself [2]. This paper will
introduce the embedded system designer to the
importance of embedded system security, review
evolving trends and standards, and illustrate how the
security requirements translate into system design
challenges.

2. SECURITY REQUIREMENTS OF AN
EMBEDDED SYSTEM
The processing capabilities of many embedded systems
are easily overwhelmed by the computational demands
of security processing, leading to undesirable tradeoffs
between security and cost, or security and performance.
Battery-driven systems and small form-factor devices
such as PDAs, cell phones and networked sensors often
operate under stringent resource constraints (limited
battery, storage and computation capacities). These

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

25

constraints only worsen when the device is subject to the
demands of security. Battery-driven systems and small
form-factor devices such as PDAs, cell phones, and
networked sensors are often severely resource
constrained. It is challenging to implement security in
the face of limited battery capacities, limited memory,
and so on. An ever increasing range of attack techniques
for breaking security, such as software, physical, and
side-channel attacks, require that the system be secure
even when it can be logically or physically accessed by
malicious entities. Countermeasures to these attacks
need to be built in during system design. The data in a
public network passes through a number of un trusted
intermediate points. Therefore the secure data must be
scrambled in such a way that the data will be useless
or unintelligible for anyone who is having unauthorized
access to the secure data. This can be achieved with the
help of cryptographic methods such as
Encryption/Decryption [3,4], Key Agreement, Digital
Signatures and Digital Certificates. The use of these
cryptographic methods in an embedded system to
achieve data security is explained in the following
sections.

2.1 Security defined in a system is to:

• Identify Threat

• Set Targets

• Assess Risks

• Devise Countermeasures (people, processes,

measures and procedures)

• Assure Countermeasures Remain Effective

 A security protocol is a sequence of steps, followed by
two or more parties, such that certain security objectives
are satisfied. A security objective is formulated to either
counter the threats or to ensure that interactions between
legitimate parties satisfy some requirements. Following
are the common security objectives which need to be
satisfied by security protocols:

1. Confidentiality - Information is not disclosed to
unauthorized entities.

2. Integrity - Any unauthorized manipulation of data can
be detected.

3. Authentication - An unauthorized entity should not be
able to pose as a legitimate entity.

2.2 Challenges in Secured Embedded Systems

Behind these visible applications there may also be
several layers of back-end systems which must prevent
fraud by distributors, network operators and other
participants in the value chain. A good example is given
by the prepayment electricity meters used to sell electric
power to students in halls of residence, in the third
world, and to poor customers to cause the system to

ignore certain events. Imagine anti-aircraft radar that
uses an embedded real-time operating system [6, 7].
Within the system are several Flash ROM chips. A virus
is installed into one of these chips and it has trusted
access to the entire bus. The virus has only one purpose
to cause the radar to ignore certain types of radar
signatures. Viruses have long since been detected” in the
wild” that write themselves into the motherboard BIOS
memory. In the late 90s, the so-called F00F bug was
able to crash a laptop completely. Although the CIH (of
Chernobyl) virus was widely popularized in the media,
virus code that used the BIOS was published long before
the release of CIH. Common, underlying challenge has
to do with the central role of domain experts in
embedded system design. It is common for embedded
system development teams to be relatively small, and
staffed more with domain experts than computing
experts. This is often appropriate, because expert
domain knowledge is crucial to success [5]. However,
small teams and companies that are concerned mostly
with an application domain rather than computer
technology often don’t have access to expertise in
dependability.

Fig.1. Common security requirements of embedded systems

User identification refers to the process of validating users
before allowing them to use the system Secure

Network access provides a network connection or
service access only if the device is authorized.

Secure communications functions include
authenticating communicating peers, ensuring
confidentiality and integrity of communicated data,
preventing repudiation of a communication transaction,
and protecting the identity of communicating entities.

Secure storage mandates confidentiality and integrity of
sensitive information stored in the system.

Content security enforces the usage restrictions of the
digital content stored or accessed by the system.

Availability ensures that the system can perform its
intended function and service legitimate users at all
times, without being disrupted by denial-of service
attacks.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

26

Symmetric ciphers require the sender and receiver to
use the same secret key to encrypt and decrypt data.
They are typically used for ensuring confidentiality of
data, and can be chosen from two classes—block and
stream ciphers [8]. Block ciphers operate on similar-
sized blocks of plaintext (original data) and cipher text
(encrypted data). Examples of block ciphers include
DES, 3DES, AES, and so on.

Asymmetric ciphers (also called public-key algorithms),
on the other hand, use a private (secret) key for
decryption, and a related public (no secret) key for
encryption or verification. They are typically used in
security protocols for verifying certificates that identify
communicating entities, generating and verifying digital
signatures, and for exchanging symmetric cipher
keys[9,10]. These algorithms rely on the use of
computationally intensive mathematical functions, such
as modular exponentiation, for encryption and
decryption.

Hashing algorithms such as MD5 and SHA provide
ways of mapping messages (with or without a key) into
a fixed-length value, thereby providing “signatures” for
messages

3. ATTACKS ON EMBEDDED SYSTEMS

AND COUNTER MEASURES
Various attacks on electronic and computing systems
have shown that hackers rarely take on the theoretical
strength of well-designed cryptographic algorithms.
Instead, they rely on exploiting security vulnerabilities
in the software and hardware components of the
implementation. In this section, we show that unless
security is considered throughout the design cycle,
embedded system implementation vulnerabilities can
easily be exploited to bypass or weaken functional
security measures. Technological advances that have
spurred the development of these electronic systems
have also ushered in seemingly parallel trends in the
sophistication of attacks they face. An ever increasing
range of attack techniques for breaking security, such as
software, physical, and side-channel attacks, require that
the system be secure even when it can be logically or
physically accessed by malicious entities.
Countermeasures to these attacks need to be built in
during system design. If Root CA certificate can be
modified, then the attacker can make the device to
accept any certificate by substituting a fake root CA
certificate and thus defeating the purpose certificate and
secured communication. It is therefore also important
that the security in the device is such that the data such
as Root CA Certificates in the device is not subjected to
unauthorized modification. First, there has been a good
deal of work on verifying crypto protocols, which are
typically sets of 3-5 transactions exchanged by two
principals. But in many real systems, these techniques
must be extended to the dozens or even hundreds of
transactions supported by the actual cryptographic

service provider (whether smartcard, crypto processor,
or software library) [11]. Finally, a tamper-resistant
device can be considered as just a high-quality
implementation of an object that can only be invoked
using its social methods, and whose internal variables
remain inaccessible. Given that the object-oriented
programming model is becoming popular, there may be
more general lessons to be learned for robust
programming.

3.1 Known-key attack

The upshot was that most bank security modules had a
transaction to generate a key share and print out its clear
value on an attached security printer. It also returned this
value to the calling program, encrypted under a master
key (which we'll call KM) which was kept in the
tamper-resistant hardware:
Host −! VSM : \Generate Key Share"
VSM −! printer: KMTi
VSM −! Host: fKMTigKM
The VSM had another transaction which combined two
of the shares to produce a terminal key: While the above
attack was found by inspection, the following one was
found by formal methods { by writing a program that
mapped the possible key and data transformations
between deferent key types, computing the transitive
closure under these, and scanning the composite
operations for undesirable properties

3.2 Passive side channel attacks

Hiding: Break relation between processed value and
power consumption
Masking / Blinding: Break relation between algorithmic
value and processed value

Fig.2. Channel attacks

3.3 A `two-time type' attack

While the above attack was found by inspection, the
following one was found by formal methods { by
writing a program that mapped the possible key and data
transformations between different key types, computing
the transitive closure under these, and scanning the
composite operations for undesirable properties. It turns
out that reusing a key type can be as dangerous as
reusing a key in a one-time cryptosystem. Just as the
Soviet re-use of key material during World War 2 led to
what Bob Morris beautifully describes as the `two-time
pad', so the re-use of the terminal master key type for
PIN generation keys makes it into a `two-time type' that
opens up another neat attack.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

27

4. MEET-IN-THE-MIDDLE ATTACKS
The attack itself is straightforward. An identical test
pattern is encrypted under each key, and the results
recorded. The same test pattern is encrypted under each
trial key and the result is then compared against all
versions of the encrypted test pattern. Checking each
key will now take slightly longer, but there will be many
less to check12, 13, and 14]. It is much more efficient to
perform a single encryption and compare the result
against many different possibilities, than it is to perform
an encryption for each comparison. Using a hash table,
the comparison stage can be made almost free.

Organizational attacks (e.g., social engineering) can be
prevented by well-thought security processes, secure
infrastructures and organizational security policies

Logical attacks (e.g., cryptographic weaknesses or
weak APIs) can be prevented by a secure well-thought
security system design and adequate security protocols

Software attacks (e.g., weak OS mechanisms or
malware) can be prevented by reliable software security
mechanisms (e.g., secure unit, secure RTEs) and the
application of hardware security mechanisms that
protect & enforce security of software mechanisms

Hardware attacks (e.g., security artefacts
manipulations/read-out, physical locks, side-channels
etc.) can be prevented by hardware tamper-protection
measures

5. MECHANISMS FOR EMBEDDED
SECURITY
Trust SW security

Hardware security

System security

Organizational security

Table 1: relationship between security services and mechanisms

Security Service Supporting Security
Mechanisms

Peer entity
authentication

Encipherment, digital
signature authentication
exchange

Data origin
authentication

Encipherment, digital
signature

Access control Access control
Confidentiality Encipherment, routing

control
Traffic flow
confidentiality

Encipherment, traffic
padding, routing control

Data integrity Encipherment, digital
signature, data integrity

No repudiation Digital signature, data

integrity, notarization
Availability Data integrity,

authentication exchange

Secure Access Protocols

Security protocols are built using cryptographic
algorithms to realize a combination of four security
objectives confidentiality, integrity, authentication and
non-repudiation, while availability is made possible
through the use of access control security mechanisms
The level of security provided is dependent upon many
things such as the cryptographic methods used, the
access to the transmitted data, algorithm key lengths,
server and client implementations and most importantly,
the human factor. Security protocols provide ways of
ensuring secure communication channels to and from
the embedded system [15]. To achieve data security,
cryptographic methods such as Encryption/Decryption,
Key Agreement, Digital Signatures and Digital
Certificates are being used

6. DATA ENCRYPTION
This paper offers two contributions. First, a survey
investigating the computational requirements for e a
number of common cryptographic algorithms and
embedded architectures is presented. The objective of
this work is to cover a wide class of commonly used
encryption algorithms and to determine the impact of
embedded architectures on their performance. This will
help designers predict a system’s performance for
cryptographic tasks. Second, methods to derive the
computational overhead of embedded architectures in
general for encryption algorithms are developed. This
allows one to project computational limitations and
determine the threshold of feasible encryption schemes
under a set of the constraints for an embedded
architecture. But when message authentication is
required in addition to encryption, hash or block ciphers,
such as RC5, have the advantage of providing support
for both authentication and encryption

6.1 Public-key Key Agreement Algorithm

In Public Key Agreement (PKA) algorithms two
interlocutors A and B produce a secret shared key (SSK)
by exchanging public information and combining it with
private one. Such cryptographic algorithms are called
asymmetric because the private information’s possessed
by A and B are different and not shared [16, 17]. In the
present talk a new method to construct PKA algorithms
is discussed in which this residual form of symmetry is
eliminated, hence the name: strongly asymmetric PKA
Algorithms The splitting of the public information into
multiple public keys implies levels of: Security Variety
of concrete realizations which cannot be found in the
standard PKA algorithms. The construction of these
algorithms does not depend on sophisticated
mathematical structures (e.g. groups associated to
elliptic curves or complex theorems of number theory).

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

28

This implies a drastic decrease in implementation
complexity and increase in velocity

6.2 Digital Signature

APPLICATIONS SUCH AS banking, stock trading, and
the sale and purchase of merchandise are increasingly
emphasizing electronic transactions to minimize
operational costs and provide enhanced services. This
has led to phenomenal increases in the amounts of
electronic documents that are generated, processed, and
stored in computers and transmitted over networks. This
electronic information handled in these applications is
valuable and sensitive and must be protected against
tampering by malicious third parties (who are neither the
senders nor the recipients of the information) [18].
Sometimes, there is a need to prevent the information or
items related to it (such as date/time it was created, sent,
and received) from being tampered with by the sender
(originator) and/or the recipient. Traditionally, paper
documents are validated and certified by written
signatures, which work fairly well as a means of
providing authenticity. For electronic documents, a
similar mechanism is necessary. Digital signatures,
which are nothing but a string of ones and zeroes
generated by using a digital signature algorithm, serve
the purpose of validation and authentication of
electronic documents. Validation refers to the process of
certifying the contents of the document, while
authentication refers to the process of certifying the
sender of the document. A simple generic scheme for
creating and verifying a digital signature is shown in
Figs. 1 and 2, respectively. A hash function is applied to
the message that yields a fixed-size message digest. The
signature function uses the message digest and the
sender’s private key to generate the digital signature. A
very simple form of the digital signature is obtained by
encrypting the message digest using the sender’s private
key. The message and the signature can now be sent to
the recipient. The message is unencrypted and can be
read by anyone. However, the signature ensures
authenticity of the sender (something similar to a
circular sent by a proper authority to be read by many
people, with the signature attesting to the authenticity of
the message). At the receiver, the inverse signature
function is applied to the digital signature to recover the
original message digest. The received message is
subjected to the same hash function to which the original
message was subjected.

Fig. 3 creating a digital signature

Fig. 4 verifying a digital signature

6.3 Digital Certificate
An attachment to an electronic message used for
security purposes. The most common use of a digital
certificate is to verify that a user sending a message is
who he or she claims to be, and to provide the receiver
with the means to encode a reply. An individual wishing
to send an encrypted message applies for a digital
certificate from a Certificate Authority (CA). The CA
issues an encrypted digital certificate containing the
applicant's public key and a variety of other
identification information. The CA makes its own public
key readily available through print publicity or perhaps
on the Internet. The recipient of an encrypted message
uses the CA's public key to decode the digital certificate
attached to the message, verifies it as issued by the CA
and then obtains the sender's public key and
identification information held within the certificate.
With this information, the recipient can send an
encrypted reply.

7. SECURE PROCESSING
ARCHITECTURES
A secure computing architecture provides a solid
foundation for secure software applications. Hardware
structures built with secure computing in mind can add
significantly to the performance of secure computation.
All domains of computer security share a common set of
primitives like encryption and hashing and the
performance of secure computing solutions are greatly
enhanced if these primitives can be implemented in
hardware instead of software.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

29

Fig 5. Encryption and Decryption

Secure SoC
In the last four decades of the 20th century, many
information and communication technologies have been
developed and also introduced in several social
infrastructures, which are supporting our daily lives.
Since the information technologies have progressed very
rapidly, the basic structure of each social infrastructure,
which was mostly designed in the 19th or the beginning
of 20th centuries with few information technologies,
should be redesigned under the assumption of the
existence of the advanced information technologies.
Based on the high performance SoCs (System-on-a-
Chip) connected by wideband networks, we can design
next generation of social systems, which are directly
related with quality of our society including individual
rights and national security SoC technology is now one
of the most fundamental information technologies for
the social infrastructure as well as network technology
and embedded software technology. Since the rapid
progress of these information technologies causes the
drastic reduction of time and space of information
transfer, processing and storage, new scheme of social
infrastructure are redesigned under the assumption of the
utilization of these information technologies.

Secure ROM

One method for storing the device secret keys securely
in the persistent storage of a device is to encrypt the
secret keys before storing. Thus even if anyone managed
to get the data out of the persistent storage he/she will
never be able to understand the secret keys. To encrypt
any data generally two things are required, an encryption
algorithm and a key for encryption. If any well-known
algorithm like AES is used for encryption of the secret
keys, then the strength of the encryption is only as
strong as the secrecy of the key that used for the
encryption. Thus the same problem faced for the storage
of the secret keys is faced again for the storage of the
key that is used for encrypting the secret keys. This
problem is repeated unless an encryption algorithm is
used that is known only to the device manufacturer. If
the device proprietary algorithm is used for the
encryption and storage of the secret keys, the security of
the secret keys are only as strong as the secrecy of the
algorithm

Table.2.Secure Boot-Loader and Code Signing

Any attempt on overriding the firmware components of
the device thus must be turned down. The presence of
secure Boot loader can ensure this. On start-up before
loading the firmware code, the Secure Boot loader
checks whether the firmware is genuine or not and
prevents the device from booting up if the device
firmware is modified or replaced.

8. CONCLUSION
In this paper we analyzed the various ways in which the
attacks can be performed on the embedded systems. Any
security function implemented in an embedded system
must be considered in both hardware and software, at all
design abstraction levels, in communications between
components, and in the manufacturing phase. The good
news is that unlike the problem of providing security in
cyberspace (where the scope is very large), securing the
application-limited world of embedded systems is more
likely to succeed in the near term. However, the
constrained resources of embedded devices pose
significant new challenges to achieving the desired
levels of security. We believe that a combination of
advances in architectures and design methodologies
would enable us to scale the next frontier of embedded
system design, wherein, embedded systems will be
“secure” to the extent required by the application and the
environment.

9. REFERENCES

[1] Counterpane Internet Security, nc.http://www.counterpane.c
http://www.counterpane.com.

[2] Paynews - Mobile Commerce Statistics.
http://www.epaynews.com/statistics/mcommstats.html.

[3] W. Stallings, Cryptography and Network Security: Principles and
Practice. Prentice Hall, 1998.

[4] B. Schneier, Applied Cryptography: Protocols, Algorithms and
Source Code inC. John Wiley and Sons, 1996

 [5] Anoop MS, Elliptic Curve Cryptography - An implementation
guide, May 2007, Available at
http://msitbox.blogspot.com/2008/03/elliptic-curve- cryptography.html

[6] M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M.Kirkup, A.
Menezes, “PGP in Constrained Wireless Devices”, in Proceedings of
the 9th USENIX Security Symposium, Denver Colorado, pp. 247-261,
Aug. 2000.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

30

[7] D. Carman, P. Kruus, B. Matt, “Constraints and approaches for
distributed sensor network security”, NAI Labs technical report#00-
010, Sept 2000,

[8] W. Dai, “Crypto++ 4.0 Benchmarks”,
http://www.eskimo.com/~weidai/benchmarks.html

[9] CH Meyer, SM Matyas, `Cryptography: A New Dimension in
Computer Data Security', Wiley, 1982

[10] SM Matyas, `Key Handling with Control Vectors', IBM Systems
Journal v 30 no 2, 1991

[11] SM Matyas, AV Le, DG Abraham, `A Key Management Scheme
Based on Control Vectors', IBM Systems Journal v 30 no 2, 1991, pp
175{191

[12] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, D. Culler, “SPINS:
Security Protocols for Sensor Networks”, Proc. 7th Ann. Intl. Conf.
Mobile Computing and Networking (MobiCom 2001), pp. 189-199,
2001.

[13] “LAN MAN Standards of the IEEE Computer Society. Wireless
LAN medium access control (MAC) and physical layer (PHY)
specification IEEE Standaard 802.11, 1997 Edition,” 1997.

[14] O. S. Elkeelany, M. M. Matalgah, K. P. Sheikh, M. Thaker, G.
Chaudhry, D. Medhi, and J. Qaddour, “Performance Analysis of IPSec
Protocol: Encryption and Authentication”, IEEE Communications
Conference (ICC 2002), pp. 1164- 1168, 2002

[15] National Institute of Standards and Technology. Advanced
Encryption Standard. FIPS Publication 197. NTIS, Nov. 2001.

[16] P. R. Schaumont, H. Kuo, and I. M. Verbauwhede. Unlocking the
design secrets of a 2.29 gb/s Rijndael processor. In DesignAutomation
Conference 2002, June 2002.

[17] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva. High
efficiency counter mode security architecture via prediction and pre
computation. In ISCA '05: Proceedings of the32nd Annual
International Symposium on Computer Architecture, pages 14.24,
Washington, DC, USA, 2005. IEEE Computer Society.

[18] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.
Ef_cient memory integrity veri_cation and encryption for secure
processors. In MICRO 36: Proceedings of the 36th annual
IEEE/ACMInternational Symposium on Microarchitecture, page 339,
Washington, DC, USA, 2003. IEEE Computer Society.

[19] G. E. Suh, C.W. O'Donnell, I. Sachdev, and S. Devadas. Design
and implementation of the aegis single-chip secure processor using
physical random functions. SIGARCH Comput. Archit. News,
33(2):25.36, 2005.

[20] J. Yang, Y. Zhang, and L. Gao. Fast secure processor for
inhibiting software piracy and tampering. In MICRO 36:
Proceedingsof the 36th annual IEEE/ACM International Symposium
on Microarchitecture, page 351, Washington, DC, USA, 2003. IEEE
Computer Society.

[21] Y. Zhang, L. Gao, J. Yang, X. Zhang, and R. Gupta.
SENSS:Security enhancement to symmetric shared memory
multiprocessors. In HPCA11. IEEE Computer Society, 2005.

